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Executive Summary 

 This article assesses whether the Federal Reserve’s monetary 

tightening would hasten the cessation of inflationary spells in the 

United States. 

 

 Excessive inflationary periods are identified and fitted to a 

proportional hazard model with a collection of time varying 

covariates, including the Fed Fund rate. 

 

 While conventional proportional hazard model addresses primarily 

duration time, a feature that is retained in our model, we introduce 

additionally a regime switching mechanism to capture nonlinearities 

that may be present in calendar time. 

 

 The two regimes are associated with low and high parameter 

uncertainty, or the variability of response of the hazard function to 

individual covariates. We find that the low uncertainty regime ex 

ante dominates about 80% of the time, with the other regime 

basically related to periods when inflationary spells end. 

 

 Tightening via the Fed Fund Rate indeed speeds up the termination 

of inflationary sessions, but the increase in the risk of “failure” is 

moderate most of the time. On the contrary, being able to alter 

market’s perception of future inflation turns out to be a more 

powerful tool in shortening an inflationary spell. 

 

The views and analysis expressed in the paper are those of the author and do not necessarily 
represent the views of the Economic Analysis and Business Facilitation Unit. 
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1. Introduction 

1.1 Economists may have different views over the causes and 

consequences of inflation, but price stability remains a ubiquitous 

paradigm in macroeconomics1. While previous studies have worked 

on issues concerning welfare cost of inflation and credibility of 

monetary policy, this paper takes a different route to look into the 

relationship between inflation and monetary policy. Specifically, we 

investigate whether monetary tightening would lengthen or shorten 

the duration of an inflationary spell, after controlling for 

fundamentals and inflation expectation. 

2. The Proportional Hazard Model 

2.1 The proportional hazard (PH) model is a general analytical 

framework widely adopted in the survival analysis literature. It 

addresses the probability of failure of an event which in many cases 

varies with the lapse of time2. The PH model has a convenient 

feature in that the subject-specific part (containing explanatory 

variables) of the hazard/failure rate can be separated from the pure 

time dependent part. A concise introduction to the literature can be 

found in Winkelmann and Boes (2006). 

2.2 Two major differences exist between the standard PH modeling 

approach and the specification adopted in this paper. First, many 

studies used partial likelihood to estimate the model parameters, 

rendering the specification of the baseline hazard unnecessary. The 

Bayesian approach here allows formal estimation of the baseline 

hazard, the parameters of which can flexibly encompass the cases of 

positive, negative and zero duration dependence. 

2.3 Second, most applications of the PH model focused on the impact of 

(duration) time variation and subject heterogeneity on the hazard 

rate. This paper, on the other hand, addresses also parameter 

constancy from the perspective of calendar time. 

                                                

1 See, for instance, Galí (2008). 
2 The hazard rate is a function of the time spent in a certain state prior to termination. The time 

here refers to duration instead of calendar time. 
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2.4 It is well known that a simple PH model can be estimated using logit 

upon slight refinement of model assumptions. Whether this can be 

inherited directly depends on the sufficiency in using the simplistic 

approach. Preliminary visual inspection of the growth cycles 3  of 

inflation and the Fed Fund rate (FFR) shows a mixed pattern of 

relationship. The result from trial logit estimation also indicates a 

positive role of the policy rate in the hazard function, i.e. higher FFR 

leads to shorter inflationary spell, but this is not statistically 

significant. 

2.5 Another issue regarding model validity is the potential endogeneity 

of the explanatory variables. The primary concern here is the 

possible reverse causality of the duration of an inflationary spell to 

policy rates. This is dealt with, though not perfectly, by the following 

assumptions. First, there is no contemporary feedback from the 

duration to the FFR. Given that inflation is widely considered a 

lagging indicator, this assumption is not too unrealistic. Second, if 

monetary tightening has anything to do with rule-based policy (e.g. 

Mehra and Minton, 2007), a certain extent of interest rate 

smoothing may be implied, thereby mitigating the influence of 

possible reverse causality. 

2.6 The model we consider takes the form: 

𝜆 𝑡| 𝑋 𝑡 , 𝛽, 𝜁𝑖 ≡ 𝜆𝑡 = 𝜆0 𝑡 𝑒𝑥𝑝 𝑋 𝑡 ′𝛽𝜏 + 𝜉𝑖                  (1) 

where t is the duration of a spell, 𝑋 𝑡  is the set of explanatory 

variables (including time varying covariates) for the hazard function 

𝜆, and 𝛽𝜏  is the vector of parameters to be estimated. 𝜆0 𝑡  is the 

baseline hazard function which indicates the unconditional shape of 

duration dependence. The term 𝜉𝑖  inside the exponential in (1) is 

similar to the setting in unobserved heterogeneity models and is 

defined over inflation episode i. In our context, this is a measure of 

episode-specific uncertainty in the hazard rate manifested as a 

normal random variable 𝜉𝑖~ 𝑁 0,𝜎𝜏
2 . 𝛽𝜏  is the coefficient vector 

which shows the impact on log hazard per unit change in the 

corresponding variables 𝑋. 

                                                

3 The extraction of these inflationary spells will be discussed in the next section. 
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2.7 The coefficient vector 𝛽𝜏  is time-dependent and can be better 

understood with the introduction of an auxiliary dichotomous 

variable: 

𝛿𝜏 =  
1     𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏 𝛼        
0     𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏 1 − 𝛼

                                                        (2) 

𝛽𝜏 = 𝛿𝜏𝛽0 +  1 − 𝛿𝜏 𝛽1,                                                              3  

𝜎𝜏
2 = 𝛿𝜏𝜎0

2 +  1 − 𝛿𝜏 𝜎1
2,     𝜎0

2 < 𝜎1
2.                                     (4) 

The specifications (2)–(4) describe a switching mechanism across 

calendar time between two regimes labeled 0  and 1 . From the 

identifying restriction in (4) regime 1 may be regarded as the high 

parameter uncertainty regime, as compared to the low uncertainty 

regime 0. These regimes dictate the set of parameters realized for the 

covariates, as indicated in (3). 𝛼 is the ex ante probability of a low 

uncertainty regime; and 𝜎𝜏
2 is the variance of 𝜉𝑖  and is a component 

of the variance of the coefficient vector  under regime s. 

2.8 As we take a Bayesian approach to estimate the model, additional 

details about the baseline hazard and the prior distributions of the 

parameters have to be stipulated. The baseline hazard is derived 

from the Weibull distribution 4 , with the parameters freely 

determined by the simulation. Specifically, 𝜆0 𝑡 = 𝑒𝑥𝑝 𝜃 𝛾𝑡𝛾−1  and 

𝑒𝑥𝑝 𝜃 , 𝛾 > 0. For this baseline hazard, duration dependence hinges 

on the size of  𝛾: there is positive (negative) dependence on duration 

if it is bigger (smaller) than 1, and no duration dependence if it 

equals 1. 𝑒𝑥𝑝 𝜃  is the scale parameter of the Weibull distribution 

and will be subsumed into the exponential term of (1) for estimation. 

2.9 Van den Berg (2008) shows how the (log) likelihood of a similar 

system without regime switching can be derived. For a spell that 

lasts through  𝑡 = 𝐽 months, we introduce another binary variable 

𝑦𝑗 = 1  if 𝑗 = 𝐽  and the observation is uncensored. For all other 

observations and cases, 𝑦𝑗 = 0. Then, the likelihood of a single spell i 

can be written as: 

                                                

4 The hazard rate is the density function divided by one minus the cumulative distribution. 



5 
 

ℒ𝑖 =  
𝜆𝐽

1 − 𝜆𝐽
 

𝑦𝑗

  1 − 𝜆𝑗  

𝐽

𝑗=1

                          (5) 

2.10 The overall likelihood is then the product of ℒ𝑖  over all measured 

spells. We assume a uniform prior for 𝛾~𝑈 0,5 . The prior for 

𝜎𝑠
−2~𝐺𝑎𝑚𝑚𝑎 𝑎(2 − 𝑠), 𝑏 ;  𝑠 = 0,1. We set 𝑎 = 10, 𝑏 = 2. Augmenting  

𝑋 𝑡 ′𝛽𝜏 with an intercept term5, we replace this with 𝑍 𝑡 ′𝛽 𝜏. Now, 

𝛽 𝜏 = 𝛿𝜏𝛽 0 +  1 − 𝛿𝜏 𝛽 1 , and 𝛽 𝑠|𝜎𝑠
2~𝑁𝑜𝑟𝑚𝑎𝑙 𝜇,𝜎𝑠

2Λ ;  𝑠 = 0,1.   𝜇  is a 

vector with elements equal one6. Λ is 100 times the identity matrix of 

corresponding dimension. Finally, the transition probability has a 

prior of beta, 𝛼~𝐵𝑒𝑡𝑎 1,1 . 

3. The Data 

3.1 Most of the monthly raw data are obtained from the CEIC database, 

and the monthly spot oil prices (WTI) are from the economagic.com 

website. The full sample starts from Jan 1947 and ends in Aug 2012. 

In order to generate a balanced sample, the actual data set used for 

estimation is smaller and starts from Oct 1956. Inflation is measured 

by the year-on-year changes in the seasonally adjusted CPI-U. The 

policy rate is the monthly average FFR. 

3.2 While not the perfect benchmark, the yield differential between 10-

year and 5-year Treasury Notes/Bonds (constant maturity) is used to 

proxy inflation expectation as there is a relatively long coverage of 

their historical values. The aggressiveness of banks is measured by 

the ratio of loans and leases to Treasury securities, both recorded in 

the credit items of banks’ balance sheets. Inflation volatility and 

persistence are, respectively, the standard deviation and 1st order 

autocorrelation coefficient of the inflation in the past two years 

computed using a 24-month moving window. Figure 1-3 compare 

U.S. inflation with other economic data used.   

                                                

5 This is the 𝜃 of the baseline hazard function. 
6 It turns out that the results are robust to the choice of prior values of the parameter vector 𝜇. 
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Figure 1: US Inflation, Unemployment and Inflation Expectation 

 

Figure 2: US Inflation and Changes in Oil Price 
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Figure 3: US Inflation and Banking Indicators 

 

Figure 4: Compiled Inflationary Spells 
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3.3 Not every point in the time series will be used as our focus is on 

inflationary spells. So the usable sample contains irregular patches 

of data representing the various overshooting cycles. Defining an 

inflationary spell is not going to be uncontroversial given the many 

signal extraction methods available. Two broad classes of 

identification schemes commonly used in economics are (i) classical 

cycles which are episodes of peak-trough movements 7  and (ii) 

growth cycles which are essentially short run deviations from an 

underlying trend. The second approach is chosen in this paper 

because even if inflation bottoms out in a negative territory (hence, 

away from the trough) it can hardly be regarded as inflationary 

situation. 

3.4 The cycles are extracted using the bandpass filter (Christiano and 

Fitzgerald, 2003) tuned with signal frequencies of 18 months and 8 

years. Excessive fluctuations in the filtered series are then identified 

using a method similar to Bordo and Jeanne (2002). In brief, if a 

positive growth figure exceeds 1.25 times the standard deviation of 

the filtered series within a moving 31-month centered window, it is 

considered an observation in an inflationary spell. Figure 4 plots the 

compiled inflationary spells. 

4. The Sampling Scheme 

4.1 First, note that the hazard rate can be expressed as: 

𝜆𝑡 = 1 − 𝑒𝑥𝑝 −𝑒𝑥𝑝 𝑋 𝑡 ′𝛽𝜏 + 𝜉𝜏 + 𝜃 + 𝑙𝑛 𝑡𝛾 −  𝑡 − 1 𝛾            (6) 

Next, the joint posterior density takes the form: 

Next, the joint posterior density takes the form: 

  𝜋 Θ|𝐷𝑎𝑡𝑎 ≡ 𝑓 𝛽𝜏 , 𝜉𝜏 ,𝜎2,𝜃, 𝛾,𝛼|𝐷𝑎𝑡𝑎                                     (7) 

=   ℒ𝑖

𝑖

   𝑓 𝜉𝑖 

𝑖

 𝑓 𝛽 𝜏|𝜎2 𝑓 𝜎0
2 𝑓 𝜎1

2 𝑓 𝛾 𝑓 𝛼  

                                                

7 See for example Harding and Pagan (2002). 
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and this will be the basis of target distributions in all Metropolis 

related simulations. The hyperparameters stated below are selected 

to achieve a desired level of acceptance ratio for the various 

Metropolis moves.  

4.2 The Shape Parameter 𝛾: 

 This is sampled from a Random-walk Metropolis step. 

 In iteration m, simulate 𝜀~𝑁𝑜𝑟𝑚𝑎𝑙 0,0.25 ,  and evaluate 

𝛾∗ = 𝛾 𝑚−1 + 𝜀. 

 With probability 

𝒜 𝛾 = 𝑚𝑖𝑛  1,
𝜋 𝛾∗| ∙ 

𝜋 𝛾(𝑚−1)| ∙ 
                       (8) 

 Set  𝛾 𝑚 = 𝛾∗,  otherwise, 𝛾 𝑚 = 𝛾(𝑚−1). 

 Here, 𝜋 𝛾| ∙  is the joint density in (7) with all other 

parameters held fixed to their latest iterated values. 

4.3 The Transition Probability 𝛼: 

 Let Δ =  𝛿𝜏  be the sequence of realized values in an iteration. 

Let 𝑛 = dimension of Δ,  𝑛0 =  𝛿𝜏𝜏  , and 𝑛1 = 𝑛 − 𝑛0. 

 This is drawn from a Gibbs step:  𝛼~𝐵𝑒𝑡𝑎 𝑛0 + 1, 𝑛1 + 1 . 

4.4 The Uncertainty Parameter 𝜉𝑖   and 𝜎𝜏
2 : 

 Draw 𝜎𝑠
−2 from the Gamma conditional posterior: 

𝐺𝑎𝑚𝑚𝑎  𝑎 𝑠 + 1 + 𝑛𝑠 ,    
1

𝑏
+
 𝜉𝜏

2
𝜏:𝛿𝜏=1−𝑠

2
 

−1

 ,    𝑠 = 0,1     (9) 

 Then, evaluate the sequence Δ such that for each 𝜏, 

𝛿𝜏 =  
1      𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏  𝑝0  𝑝0 + 𝑝1  

0      𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏  𝑝1  𝑝0 + 𝑝1  
                                (10) 
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where 𝑝0 = 𝛼𝜋𝜏 Θ| ∙   and  𝑝1 =  1 − 𝛼 𝜋𝜏 Θ| ∙ , with 𝜋𝜏  being 

the joint density (7) for the 𝜏 − 𝑡ℎ observation evaluated with 

the indicated parameter. 

 Draw 𝜉𝑖  from an independence Metropolis step as follows: 

Propose for each spell  𝑖:    𝜉𝑖
∗~𝑞 𝜉𝑖

∗ = 𝑁𝑜𝑟𝑚𝑎𝑙 0,0.5 8. 

 Accept the proposed value with probability 

𝒜 𝜉𝑖 = 𝑚𝑖𝑛  1,
𝜋 𝜉𝑖

∗| ∙ 𝑞 𝜉𝑖
(𝑚−1)

 

𝜋 𝜉𝑖
(𝑚−1)

| ∙ 𝑞 𝜉𝑖
∗ 
 ,                       (11) 

otherwise, leave 𝜉𝑖
(𝑚)

= 𝜉𝑖
(𝑚−1)

. 

4.5 Parameters for Time Varying Covariates 𝛽 𝜏: 

 This is done with a Metropolis Hastings step: Propose for   

 𝑠 = 0, 1;   𝛽𝑠
∗~𝑞 𝛽𝑠

∗|𝛽 𝑠
(𝑚−1)

 = 𝑁𝑜𝑟𝑚𝑎𝑙 𝛽 𝑠
(𝑚−1)

,𝜎𝑠
2Φ  with 

Φ = 100 ×  Z′Z −1. 

 Accept the proposed value with probability 

𝒜 𝛽 𝜏 = 𝑚𝑖𝑛  1,
𝜋 𝛽𝑠

∗| ∙ 𝑞 𝛽 𝑠
(𝑚−1)

|𝛽𝑠
∗ 

𝜋 𝛽 𝑠
(𝑚−1)

| ∙ 𝑞 𝛽𝑠
∗|𝛽 𝑠

(𝑚−1)
 
 ,            (12) 

otherwise, leave 𝛽 𝑠
(𝑚)

= 𝛽 𝑠
(𝑚−1)

. 

5. Empirical Findings 

5.1 The estimates of the major parameters are summarized in Table 1. 

The highest probability density intervals (HPDI), the Bayesian 

equivalence of confidence intervals are also presented. Our results 

show that the low uncertainty regime (regime 0) generally dominates 

with a estimated probability of over 80%. In fact, they are associated 

with most observations except for the end-points of the inflationary 

spells.  

                                                

8 This can be done by sampling all i terms as a block. 
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Table 1: Summary of Estimates in the Proportional Hazard 

Model 

 Regime 𝟎 Regime 𝟏 
 

Parameters/ 
Coefficients 

Coefficients Highest Prob. 
Density Interval 

Coefficients Highest Prob. 
Density Interval 

     

𝛾 1.3871 (0.4326, 2.3296) same same 

𝛼 0.8254 (0.58, 0.97) same same 

     
𝛽  for:     

     
Fed Fund Rate 
 

0.0445 (-0.5033, 0.5329) 0.1048 (-1.2028, 1.4885) 

Loan/Sec Ratio 
 

0.0009 (-0.0104, 0.0118) 0.0006 (-0.0306, 0.0300) 

Yield Spread 
 

1.0298 (-2.9640, 5.0212) 0.9878 (-8.4452, 11.0385) 

Unemp. Rate 
 

-0.4743 (-1.4212, 0.5089) -0.8282 (-3.3784, 1.6114) 

Oil Price Growth 
 

-0.0115 (-0.0435, 0.0170) -0.0225 (-0.1108, 0.0544) 

Inflation Volatility 0.2762 (-1.8819, 2.0748) -0.3976 (-5.3728, 4.9067) 
     

𝜎2 0.0652 (0.0192, 0.1181) 0.1710 (0.0255, 0.3618) 
     

 

5.2 Interpretation of the coefficients is in the usual ceteris paribus sense. 

In the low uncertainty regime 0, an increase in the FFR has a very 

moderate impact on ending an inflation cycle. For a 1% point 

increase in FFR, there is a 𝑒𝑥𝑝 0.0445 − 1 = 4.55% increase in the 

hazard of ending the inflationary spell. By similar calculations, an 

increase in unemployment rate by 1% point reduces such risk by 

about 38%, and an increase in year on year oil price growth by 1% 

also lowers the risk by 1.1%. 

5.3 On the other hand, the high uncertainty regime 1 has a much higher 

FFR hazard elasticity. It amounts to 𝑒𝑥𝑝 0.0445 − 1 = 11.05%. A 1% 

point increase in unemployment rate reduces the hazard by 56%. 

5.4 Yield spread, imposed as a proxy measuring market’s perception of 

future inflation, has a positive effect in hastening the completion of 

an inflationary cycle. The impact elasticities on the hazard are 1.8 

times and 1.68 times respectively in regime 0 and regime 1. So the 

concern of market seems to be a more important determinant of 
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inflation reversal compared to most other factors included in the 

study. 

5.5 The hazard elasticities of inflation volatilities assume different signs 

under the two regimes. It is hazard enhancing in the low uncertainty 

regime, and hazard reducing in the other. This probably reflects the 

fact that volatility typically increases prior to the end of the 

inflationary session. 

5.6 Recall that the parameter 𝛾  governs the degree of duration 

dependence. Here, the estimated 𝛾  is bigger than one, indicating 

there is positive duration dependence, or the probability that an 

inflationary spell ends increases with the passage of time. 

5.7 Figure 5 plots the inflationary spells and the probability of realizing 

the low uncertainty regime. The spells are plotted with alternate red 

and orange colors for easy reference. The time scale is non-

continuous and has the time periods not classified as inflationary 

spells taken out. 

Figure 5: Inflationary Spells and Probability of Regimes 
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5.8 As is evidenced from the diagram, the probability of a regime 0 dips 

drastically at the end of almost every inflationary spell. In other 

words, it is the end of each spell that is associated with regime 1. 

6. Conclusive Remarks   

6.1 A Proportional Hazard Model is fit to US inflation and economic 

variables to shed light on the determinants of inflation durations.  

6.2 The findings are consistent with the evidence of inflation inertia 

witnessed in certain New Keynesian and Vector Autoregression 

models.  

6.3 In general, there is positive duration dependence, or the probability 

of an inflationary spell ends increase with its duration. Monetary 

tightening tends to hasten the end of such sessions, but the impact 

on the “hazard” is not very strong. Steepening of the yield curve, a 

proxy for inflation expectation, appears a better predictor for a 

reversal in inflationary pressures. 
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